Проект на тему
Зміст
Назва проекту
Хто захопив наш світ?
Автори проекту
Учні 11 класу. Група "Дослідники"
Тема дослідження
Які знання про многогранники допоможуть жити в сучасному суспільстві?
Проблема дослідження
Що ми знаємо про многогранники?
Гіпотеза дослідження
Мета дослідження
Результати дослідження
Піраміда Пірамі́да — багатогранник, який складається з плоского багатокутника і точки (яка не лежить у площині основи) та всіх відрізків, що сполучають вершину піраміди з точками основи. Відрізки, що сполучають вершину піраміди з вершинами основи, називаються бічними ребрами. Поверхня піраміди складається з основи і бічних граней. Кожна бічна грань — трикутник. Однією з його вершин є вершина піраміди, а протилежною стороною — сторона основи піраміди.
Висотою піраміди є перпендикуляр, опущений з вершини піраміди на площину основи.
Піраміда називається n-кутною, якщо її основою є n-кутник. Для трикутної піраміди існує власна назва — чотиригранник. Правильна піраміда (довершена) — якщо її основою є правильний багатокутник, центр якого збігається з основою висоти піраміди. Бічна поверхня правильної піраміди дорівнює добутку півпериметра основи на апофему.
Вісь правильної піраміди — пряма, яка містить її висоту. У правильній піраміді бічні ребра рівні між собою, а бічні грані — рівні рівнобедрені трикутники.
Висота бічної грані правильної піраміди, проведена з її вершини, називається апофемою. Бічною поверхнею піраміди називається сума площ її бічних граней. Площа бічної поверхні правильної піраміди дорівнює добутку половини периметра (півпериметру) основи на апофему: S_b = \frac{1}{2} P l = \frac{n}{2} b^2 \sin \alpha, де P — периметр, l — апофема, n — число сторін основи, b — бічне ребро, \alpha — кут при вершині піраміди Об'єм піраміди дорівнює одній третій добутку площі її основи S на висоту h: V = \frac{1}{3} S h Бокові ребра піраміди рівні; Бокові ребра піраміди нахилені до площини її основи під рівними кутами; Проекція вершини піраміди на площину її основи співпадає із центром кола, описаного навколо основи. Такі три твердження також є еквівалентними:
Вершина піраміди рівновіддалена від усіх сторін її основи; Двогранні кути при основі піраміди рівні; Вершина піраміди проектується до центру кола, вписаного в її основу.
- Площа бічної поверхні правильної піраміди дорівнює добутку половини периметра (півпериметру) основи на апофему:
<math>S_b = \frac{1}{2} P l = \frac{n}{2} b^2 \sin \alpha</math>,
де P — периметр, l — апофема, n — число сторін основи, b — бічне ребро, <math> \alpha</math> — кут при вершині піраміди - Об'єм піраміди дорівнює одній третій добутку площі її основи S на висоту h:
<math>V = \frac{1}{3} S h</math>