Відмінності між версіями «Проект на тему»

Матеріал з Iteach WIKI
Перейти до: Навігація, пошук
(Результати дослідження)
(Автори проекту)
Рядок 11: Рядок 11:
  
 
==Автори проекту==
 
==Автори проекту==
Учні 11 класу. Група "Дослідники"
+
Учні 11 класу. Група "Історики"
  
 
==Тема дослідження==
 
==Тема дослідження==

Версія за 18:28, 2 травня 2014




Назва проекту

Хто захопив наш світ?

Автори проекту

Учні 11 класу. Група "Історики"

Тема дослідження

Які знання про многогранники допоможуть жити в сучасному суспільстві?

Проблема дослідження

Що ми знаємо про многогранники?

Гіпотеза дослідження

Мета дослідження

Результати дослідження

Піраміда Пірамі́да — багатогранник, який складається з плоского багатокутника і точки (яка не лежить у площині основи) та всіх відрізків, що сполучають вершину піраміди з точками основи. Відрізки, що сполучають вершину піраміди з вершинами основи, називаються бічними ребрами. Поверхня піраміди складається з основи і бічних граней. Кожна бічна грань — трикутник. Однією з його вершин є вершина піраміди, а протилежною стороною — сторона основи піраміди.

Висотою піраміди є перпендикуляр, опущений з вершини піраміди на площину основи.

Піраміда називається n-кутною, якщо її основою є n-кутник. Для трикутної піраміди існує власна назва — чотиригранник. Правильна піраміда (довершена) — якщо її основою є правильний багатокутник, центр якого збігається з основою висоти піраміди. Бічна поверхня правильної піраміди дорівнює добутку півпериметра основи на апофему.

Вісь правильної піраміди — пряма, яка містить її висоту. У правильній піраміді бічні ребра рівні між собою, а бічні грані — рівні рівнобедрені трикутники.

Висота бічної грані правильної піраміди, проведена з її вершини, називається апофемою. Бічною поверхнею піраміди називається сума площ її бічних граней. Площа бічної поверхні правильної піраміди дорівнює добутку половини периметра (півпериметру) основи на апофему: S_b = \frac{1}{2} P l = \frac{n}{2} b^2 \sin \alpha, де P — периметр, l — апофема, n — число сторін основи, b — бічне ребро, \alpha — кут при вершині піраміди Об'єм піраміди дорівнює одній третій добутку площі її основи S на висоту h: V = \frac{1}{3} S h Бокові ребра піраміди рівні; Бокові ребра піраміди нахилені до площини її основи під рівними кутами; Проекція вершини піраміди на площину її основи співпадає із центром кола, описаного навколо основи. Такі три твердження також є еквівалентними:

Вершина піраміди рівновіддалена від усіх сторін її основи; Двогранні кути при основі піраміди рівні; Вершина піраміди проектується до центру кола, вписаного в її основу.

  • Площа бічної поверхні правильної піраміди дорівнює добутку половини периметра (півпериметру) основи на апофему:
    <math>S_b = \frac{1}{2} P l = \frac{n}{2} b^2 \sin \alpha</math>,
    де P — периметр, l — апофема, n — число сторін основи, b — бічне ребро, <math> \alpha</math> — кут при вершині піраміди
  • Об'єм піраміди дорівнює одній третій добутку площі її основи S на висоту h:
    <math>V = \frac{1}{3} S h</math>

\sin x + \ln y +\operatorname{sgn} z \sin a \ \cos b \ \tan c \ \cot d \ \sec e \ \csc f \sinh g \ \cosh h \ \tanh i \ \coth j \arcsin k \ \arccos l \ \arctan m \lim n \ \limsup o \ \liminf p \min q \ \max r \ \inf s \ \sup t \exp u \ \lg v \ \log w \ker x \ \deg x \gcd x \Pr x \ \det x \hom x \ \arg x \dim x

Піраміда

Піраміда

Висновки

Корисні ресурси