Відмінності між версіями «Симетрія в прикладних задачах»
Steplab (обговорення • внесок) (→Висновки) |
Steplab (обговорення • внесок) (→Висновки) |
||
Рядок 32: | Рядок 32: | ||
==Висновки== | ==Висновки== | ||
− | Застосовуючи симетрію, можна знайти більш раціональні методи розв'язування прикладних задач | + | Застосовуючи симетрію, можна знайти більш раціональні методи розв'язування прикладних задач. |
Отже, ми з’ясували, що при застосуванні симетрії в задачах розв’язання набуває більш досконалого виду і краще сприймається та запам’ятовується. | Отже, ми з’ясували, що при застосуванні симетрії в задачах розв’язання набуває більш досконалого виду і краще сприймається та запам’ятовується. | ||
==Корисні ресурси== | ==Корисні ресурси== | ||
[[Тренінг для учителів математики (9 квітня - 25 травня 2012 рік)]] | [[Тренінг для учителів математики (9 квітня - 25 травня 2012 рік)]] |
Версія за 15:23, 21 лютого 2014
Зміст
Назва проекту
Симетрія у прикладних задачах
Автори проекту
учні 9 класу
Тема дослідження
Застосування перетворення симетрії в геометричних задачах.
Проблема дослідження
Чи доцільно застосовувати стандартні методи при розв’язуванні геометричних задач?
Гіпотеза дослідження
Застосування перетворення фігур на площині, в даному випадку симетрії, спрощує хід розв’язання деяких задач.
Мета дослідження
Метою дослідження є з’ясування питання: чи можна перетворення симетрії застосувати при розв’язуванні стандартних геометричних задач , якщо так, то чи не спроститься при цьому розв’язок задачі.
Результати дослідження
На початку роботи над проектом перед нами було поставлено мету: чи можна перетворення симетрії на площині застосувати при розв’язуванні стандартних геометричних задач , якщо так, то чи не спроститься при цьому розв’язок задачі. Нами був проведений аналіз задач які можна розв’язувати різними методами: стандартними і не тільки. В результаті роботи над даною темою ми переглянули багато літератури, знайшли багато різних задач в яких можна застосувати симетрію чи інші перетворення фігур на площині. Такі задачі зустрічаються здебільшого в підручних геометрії 9 класу для профільної школи та в задачах Всеукраїнських учнівських олімпіад. Ми переконалися, що такий клас задач можна розв’язувати декількома способами. Але, проаналізувавши результати можна впевнено говорити про те, що застосування симетрії в задачах робить розв’язок одночасно і простим. і оригінальним, і красивим.
Ідея перетворень в геометрії є однією з провідних ідей. За її допомогою з успіхом доводять складні твердження з різних розділів геометрії, які виходять далеко за межі шкільного курсу.
Висновки
Застосовуючи симетрію, можна знайти більш раціональні методи розв'язування прикладних задач. Отже, ми з’ясували, що при застосуванні симетрії в задачах розв’язання набуває більш досконалого виду і краще сприймається та запам’ятовується.
Корисні ресурси
Тренінг для учителів математики (9 квітня - 25 травня 2012 рік)