Відмінності між версіями «Учнівська вікі-стаття "Галузі застосування обчислювальної техніки"»
(→Результати дослідження) |
(→Результати дослідження) |
||
Рядок 31: | Рядок 31: | ||
Перші обчислювальні машини | Перші обчислювальні машини | ||
Неможливо точно відповісти на питання, хто саме винайшов комп'ютер. Річ у тому, що ком¬п'ютер не є винаходом однієї людини. Комп'ютер увібрав у собі ідеї та технічні рішення багатьох вчених та інженерів. Розвиток обчислювальної техніки стимулювався потребою у швидких щ точних обчислюваннях та тривав сотні років. У процесі розвитку обчислювальна техніка ставала дедалі більш досконалою. Цей процес триває і в наш час. | Неможливо точно відповісти на питання, хто саме винайшов комп'ютер. Річ у тому, що ком¬п'ютер не є винаходом однієї людини. Комп'ютер увібрав у собі ідеї та технічні рішення багатьох вчених та інженерів. Розвиток обчислювальної техніки стимулювався потребою у швидких щ точних обчислюваннях та тривав сотні років. У процесі розвитку обчислювальна техніка ставала дедалі більш досконалою. Цей процес триває і в наш час. | ||
− | [[Файл:Elm.jpg|250px]]Вважається, що першій у світі ескізний ма¬люнок тринадцятирозрядного десятинного суму¬ючого пристрою на базі коліщаток з десятьма зубцями був виконаний Леонардо да Вінчі в од¬ному з його щоденників (вчений почав вести цей щоденник ще до відкриття Америки 1492 р.). | + | [[Файл:Elm.jpg|thumb|250px]]Вважається, що першій у світі ескізний ма¬люнок тринадцятирозрядного десятинного суму¬ючого пристрою на базі коліщаток з десятьма зубцями був виконаний Леонардо да Вінчі в од¬ному з його щоденників (вчений почав вести цей щоденник ще до відкриття Америки 1492 р.). |
1623 року (більш ніж через 100 років після смерті Леонардо да Вінчі) німецький вчений Вільгельм Шиккард запропонував свою модель шестирозрядного десятинного обчислювача, який мав складатися також із зубчатих коліщаток та міг би виконувати додавання, віднімання, а також множення та ділення. Винаходи да Вінчі та Шиккарда були знайдені лише в наш час та залишилися тільки на папері. | 1623 року (більш ніж через 100 років після смерті Леонардо да Вінчі) німецький вчений Вільгельм Шиккард запропонував свою модель шестирозрядного десятинного обчислювача, який мав складатися також із зубчатих коліщаток та міг би виконувати додавання, віднімання, а також множення та ділення. Винаходи да Вінчі та Шиккарда були знайдені лише в наш час та залишилися тільки на папері. | ||
1642 року 19-річний французький математик Блез Паскаль сконструював першу в світі працюючу механічну обчислювальну машину, відому як підсумовуюча машина Паскаля («Паскаліна»). Ця машина являла собою комбінацію взаємопов'язаних коліщаток та приводів. На коліщатках були зображені цифри від 0 до 9. Якщо перше коліщатко робить повний оберт від 0 до. 9. автоматично починає рухатись друге коліщатко. Якщо і друге коліщатко доходить до цифри 9, починає обертатися третє і так далі. Машина Паскаля могла лише додавати та віднімати. | 1642 року 19-річний французький математик Блез Паскаль сконструював першу в світі працюючу механічну обчислювальну машину, відому як підсумовуюча машина Паскаля («Паскаліна»). Ця машина являла собою комбінацію взаємопов'язаних коліщаток та приводів. На коліщатках були зображені цифри від 0 до 9. Якщо перше коліщатко робить повний оберт від 0 до. 9. автоматично починає рухатись друге коліщатко. Якщо і друге коліщатко доходить до цифри 9, починає обертатися третє і так далі. Машина Паскаля могла лише додавати та віднімати. |
Поточна версія на 15:52, 11 вересня 2013
Зміст
Назва проекту
Галузі застосування обчислювальної техніки
Автори проекту
2 група
Тема дослідження
Основні напрями використання комп'ютерів за нашого часу
Проблема дослідження
Дослідити обчислювальні машини сучасності
Гіпотеза дослідження
Чи можливий розвиток сучасного суспільства без використання ЕОМ?
Мета дослідження
Проаналізувати та порівняти основні галузі застосування обчислювальної техніки в різні етапи розвитку суспільства, та використання ЕОМ в сучасному житті
Результати дослідження
У людей завжди існувала потреба виконувати ті або інші розрахунки. Поява ЕОМ дала можливість вирішувати такі завдання, які раніше були не під силу механічним і електромеханічним обчислювальним пристроям. Перші потужні ЕОМ конструювалися заради вирішення складних прикладних науково-технічних завдань: визначення координат кораблів, космічних апаратів, розрахунку фізичних процесів, економічного планування тощо. Для виконання різних розрахунків а ЕОМ створювалося спеціальне математичне і програмне забезпечення. Вартість цього забезпечення вже в 60-ті роки перевищила вартість матеріальної частини ЕОМ. Нині обробку інформації неможливо уявити без допомоги комп'ютера. Комп'ютер — це пристрій, призначений для виконання заданої, чітко визначеної послідовності дій щодо обробки інформації. Перші обчислювальні машини Неможливо точно відповісти на питання, хто саме винайшов комп'ютер. Річ у тому, що ком¬п'ютер не є винаходом однієї людини. Комп'ютер увібрав у собі ідеї та технічні рішення багатьох вчених та інженерів. Розвиток обчислювальної техніки стимулювався потребою у швидких щ точних обчислюваннях та тривав сотні років. У процесі розвитку обчислювальна техніка ставала дедалі більш досконалою. Цей процес триває і в наш час.
Вважається, що першій у світі ескізний ма¬люнок тринадцятирозрядного десятинного суму¬ючого пристрою на базі коліщаток з десятьма зубцями був виконаний Леонардо да Вінчі в од¬ному з його щоденників (вчений почав вести цей щоденник ще до відкриття Америки 1492 р.).1623 року (більш ніж через 100 років після смерті Леонардо да Вінчі) німецький вчений Вільгельм Шиккард запропонував свою модель шестирозрядного десятинного обчислювача, який мав складатися також із зубчатих коліщаток та міг би виконувати додавання, віднімання, а також множення та ділення. Винаходи да Вінчі та Шиккарда були знайдені лише в наш час та залишилися тільки на папері. 1642 року 19-річний французький математик Блез Паскаль сконструював першу в світі працюючу механічну обчислювальну машину, відому як підсумовуюча машина Паскаля («Паскаліна»). Ця машина являла собою комбінацію взаємопов'язаних коліщаток та приводів. На коліщатках були зображені цифри від 0 до 9. Якщо перше коліщатко робить повний оберт від 0 до. 9. автоматично починає рухатись друге коліщатко. Якщо і друге коліщатко доходить до цифри 9, починає обертатися третє і так далі. Машина Паскаля могла лише додавати та віднімати. 1673 року німецький математик Готфрід Вільгельм фон Лейбніц сконструював свою обчислювальну машину. На відміну від Паскаля Лейбніц використав у своїй машині циліндри, а не коліщатка чи приводи. На циліндри було нанесено цифри. Кожен циліндр мав дев'ять рядків виступів та зубців. При цьому перший ряд мав один виступ, другий ряд два виступи і так до дев'ятого ряду, який мав відповідно дев'ять виступів. Циліндри з виступами були пересув¬ними, оператор надавав їм певного положення. Машина Лейбніца, на відміну від підсумовуючої машини Паскаля була значно складнішою за конструкцією. Вона була здатна виконувати не тільки додавання та віднімання, але й множен¬ня, ділення та обчислювання квадратного кореня. Обчислювальні машини XIX сторіччя Винахід першої програмованої обчислюваль¬ної машині! належить видатному англійському математику Чарлзу Бебіджу (1830 р.). Він при¬святив майже все своє життя цін праці, але так і не створив діючу модель. Бебідж назвав свій винахід «Аналітична машина». За планом машина мала діяти завдяки силі пару. При цьо¬му вона була б здатна сприймати команди, ви¬конувати обчислення та видавати необхідні результати у надрукованому вигляді. Програми в свою чергу мали кодуватися та переноситись на перфокарти. Ідея використання перфокарт була запозичена Бебіджем у французького винахід¬ника Жозефа Жаккара (кінець XVIII ст.). Для контролю ткацьких операцій Жаккар використовував отвори, пробиті в картках. Картки з різним розташуванням отворів давали різні візерунки на плетінні тканини. По суті Бебідж був першим, хто використав перфокарти стосовно обчислювальних машин. У своїй машині Бебідж використав також технологію обчислень, запропоновану наприкінці XVIII сторіччя французьким вченим Гаспаром де Проні. Він розділив обчислення на три етапи: розробка чисельного методу, створення програми послідовності арифметичних дій. проведення обчислень шляхом арифметичних опертий над числами згідно зі створеною програмою. Серед учених, які зробили значний внесок у розвиток обчислювальної техніки була математик леді Августа Лавлейс — дочка видатного англійського поета лорда Байрона. Саме вона переконала Бебіджа у необхідності використання у його винаході двійкової системи обчислення замість десяткової. Вона також розробила принципи програмування, що передбачали повторення послідовності команд та виконання цих команд за певних умов. Ці принципи використовуються і н сучасній обчислювальній техніці. Чарлз Бебідж вперше висловив ідею використання перфокарт в обчислювальній техніці, але реалізовано цю ідею було тільки 1887 року Германом Холерітом. Його машина була призначена для обробки результатів перепису населення США. Також Холеріт уперше застосував для ор¬ганізації процесу обчислення електричну силу. Картки використовувались для кодування даних перепису, при цьому на кожну людину була заведена окрема картка. Кодування велося за допомогою деякого розташування отворів, що пробивалися в картці по рядках та колон¬ках. Наприклад, отвір, що був пробитий в тре тій колонці та четвертому рядку, міг означати, що людина одружена. Коли картка, що мала розмір банкноти н один долар, пропускалася крізь машину, вона прощупувалась системою голок. Якщо навпроти голки з'являвся отвір, то голка проходила крізь нього і дотулялася до металевої поверхні, що була розташована під карткою. Контакт, який відбувався при цьому. замикав електричний ланцюг, завдяки чому до результату обчислення додавалася одиниця. Перші електроино-обчислювальні машини Перші електронні комп'ютери з'явилися в першій половині XX ст. На відміну від поперед¬ніх, вони могли виконувати задану послідов¬ність операцій за програмою, що була задана раніше, або послідовно розв'язувати задачі різ¬них типів. Перші комп'ютери були здатні збері¬гати інформацію в спеціальній нам'яті. 1934 року німецький студент Конрад Цузе. який працював над дипломним проектом, вирішив створити у себе вдома цифрову обчислювальну машину з програмним управлінням та з використанням (вперше в світі) двійкової системи числення. 1937 року машина Z1 (Цузе 1) запрацювала. Вона була 22-розрядною. з пам'яттю на 64 числа і працювала на чисто механічній (важільній) базі. Необхідність у швидких та точних обчислен¬нях особливо зросла під час Другої світової війни (1939-1915 рр.) перш за все для розв'язання задач балістики, тобто науки про траєкторію польоту артилерійських та інших снарядів до цілі. 1937 року Джон Атанасов (американський вчений, болгарин за походженням) вперше за¬пропонував ідею використання електронних ламп як носіїв інформації. В 1942-1943 роках в Англії була створена за участю Алана Тьюрінга обчислювальна машина «Колос». В ній було 2000 електронних лами. Машина призначалася для розшифрування радіограм німецького вермахту. «Колос» вперше в світі зберігав та обробляв дані за допомогою електроніки, а не механічно. Митний Цузе та Тьюрінга були засекреченими, про їх створення стало відомо через багато років після закінчення війни. 1944 року під керівництвом професора Гарвардського університету Гонарда Айкена було створено обчислювальну машину з автоматичним керуванням послідовністю дій. відому під назвою Марк 1. Ця обчислювальна машина була здатна сприймати вхідні дані з перфокарт або перфострічок. Машина Марк 1 була електромеханічною, для зберігання даних використовувались механічні прилади (коліщатка та перемикачі). Машина Айкена могла виконувати близько однієї операції за секунду та .мала величезні розміри: понад 15 м завдовжки та близько 2.5 м заввишки і складалася більш ніж із 750 тисяч деталей. 1946 року групою інженерів під керівництвом Джона Моучлі та Дж. Преспера Еккерта на замовлення військового відомства США було створено машину ЕНІАК, яка була здатна виконувати близько 3 тисяч операцій за секунду. За розмірами ЕНІАК був більшим за Марк 1: понад 30 метрів завдовжки, його об'єм становив 85 м4. Важив ЕНІАК 30 тонн. Замість тисяч механічних деталей Марка 1, в ЕНІАКу було використано 18 тисяч електронних ламп. Суттєвий внесок до створення ЕОМ зробив американський математик Джон фон Нейман. що брав участь у створенні ЕНІАКа. Фон Нейман запропонував ідею зберігання програми в нам'яті машини. Такі ЕОМ були значним кроком уперед на шляху створення більш досконалих машин. Вони були здатні обробляти команди в різному порядку. Перша ЕОМ, яка зберігала програми у пам'яті, дістала назву ЕДСАК (Electronic Delay Storage Automatic Calculator - електронний калькулятор з пам'яттю на лініях затримки). Вона була створена в Кембріджському університеті (Англія) 1919 року. З того часу всі ЕОМ є комп'ютерами з програмами, які зберігаються у пам'яті. 1951 року в Києві під керівництвом С. Лєбєдєва незалежно було створено МЕОМ (Мала Електрична Обчислювальна Машина). 1952 року ним же було створено ШЕОМ (Швидкодіюча Електрична Обчислювальна Машина), яка була на той час кращою в світі та .могла виконувати близько 8 тисяч операцій за секунду. 1951 року компанія Джона Моучлі та Дж. Преспера Еккерта створила машину UNIVAC (Universal Automatic Computer — універсальна автоматична обчислювальна машина). Перший екземпляр ЮНІВАКа було передано в Бюро перепису населення СІНА. Потім було створено багато різних моделей ЮНІDАКа, які почали застосовуватися у різних галузях діяльності. Таким чином, ЮНІВАК став першим серійним комп'ютером. Крім того, це був перший комп'ютер, в якому замість перфострічок та карток було використано магнітну стрічку. Покоління комп'ютерів Такі комп'ютери, як ЕНІАК, ЕДСАК. ШЕОМ та ЮНІВАК, являли собою лише перші моделі ЕОМ. Упродовж десятиріччя після створення ЮНІВАКа було виготовлено та введено до експлуатації в США близько 5000 комп'ютерів. Гігантські машини на електронних лампах 50-х років склали перше покоління комп'ютерів. Друге покоління комп'ютерів з'явилося на початку 60-х років, коли на зміну електронним лампам прийшли транзистори. Винайдені 1948 р. транзистори, як виявилось, були спроможні виконувати всі ті функції, які до цього часу виконували електронні лампи. Але при цьому вони були значно менші за розмірами та споживали набагато менше електроенергії. До того ж транзистори дешевші, випромінюють менше тепла та більш надійні, ніж електронні лампи. І все ж таки найдивовижнішою властивістю транзистора є те, що він один здатен виконувати функції 40 електронних ламп та ще іі з більшою швидкістю, ніж вони. В результаті швидкодія машин другого покоління виросла приблизно в 10 разів у порівнянні з машинами першого покоління, обсяг їх пам'яті також збільшився. Водночас із процесом заміни електронних ламп транзисторами вдосконалювалися методи зберігання інформації. Магнітну стрічку, що вперше було використано в ЕОМ ЮНІВАК, почали використовувати як для введення, так і для виведення інформації. А в середині 60-х років набуло розповсюдження зберігання інформації на дисках. Поява інтегрованих схем започаткували новий етап розвитку обчислювальної техніки народження машин третього покоління. Інтегрована схема, яку також називають кристалом, являє. собою мініатюрну електронну схему, витравлену на поверхні кремнієвого кристала площею приблизно 10 мм. Перші інтегровані схеми (ІС) з'явилися 1964 року. Поява інтегрованих схем означала справжню революцію в обчислювальній техніці. Одна така схема здатна замінити тисячі транзисторів, кожний з яких у свою чергу уже замінив 40 електронних лами. Інакше кажучи, один крихіт¬ний, але складний кристал має такі ж самі обчислювальні можливості, як і 30-тонний ЕНІАК! Швидкодія ЕОМ третього покоління збільшилася приблизно в 100 разів у порівняні з машинами другого покоління, я розміри набагато зменшилися. Четверте покоління — ЕОМ на великих інтегрованих схемах. Розвиток мікроелектроніки дай змогу розміщати на одному кристалі тисячі інтегрованих схем. Так, 1980 р. центральний процесор невеликої ЕОМ вдалося розташувати на кристалі площею 1,6 см2. Почалася епоха мікрокомп'ютерів. Швидкодія сучасної ЕОМ в десятки разів перевищує швидкодію ЕОМ третього покоління на інтегральних схемах, в 100 разів -- швидкодію ЕОМ другого покоління на транзисторах та в 10 000 разів швидкодію ЕОМ першого покоління на електронних лампах. З винаходом персональних комп'ютерів і розробкою мережних технологій з'явилися нові галузі застосування обчислювальної техніки. Наведемо лише основні напрями використання комп'ютерів за нашого часу. • Математичні розрахунки - виконання розрахунків за допомогою різних математичних пакетів, електронних таблиць тощо. • Бази і банки даних — створюються в різних галузях людської діяльності (законодавство, економіка, бізнес, медицина та інше). • Бізнес-додатки - бухгалтерські програми, облік руху товарів і фінансів, обслуговування банків і страхових компаній, автоматизовані системи керування підприємствами тощо. • Робота з текстовими матеріалами - створення документів, оптичне розпізнавання, переклад. • Видавництво і поліграфія - макетування книг, журналів, газет; автоматизація поліграфічного процесу. • Комп'ютерна графіка і живопис - опрацювання графічних зображень, створення малюнків засобами комп'ютерної графіки. • Інженерна графіка - різні програмні додатки в архітектурі, машинобудуванні, електронній техніці; створення геоінформаційних систем. • Наукові дослідження - машинне моделювання експериментів, розрахунки фізичних моделей тощо. • Комунікації - комп'ютерні мережі різного масштабу, Інтернет, електронна пошта, телеконференції. • Web-технології - підготовка публікацій, призначених для World Wide Web; електронна комерція. • Розваги і дозвілля - мультимедійні додатки, комп'ютерні ігри, контакти із зовнішнім світом. Нині створюються та розвиваються ЕОМ п'ятого покоління - ЕОМ на надвеликих інтегрованих схемах. Ці ЕОМ використовують нові рішення у архітектурі комп'ютерної системи та принципи штучного інтелекту.
Висновки
В ході дослідження з'ясували, що наше сучасне життя повністю прив'язане до електронних машин. Не залишилось таких галузей людського життя де б не використовувалися різного виду ЕОМ.