Відмінності між версіями ««Чим може здивувати «хитрий» многочлен?»»
(→Результати дослідження) |
(→Результати дослідження) |
||
Рядок 23: | Рядок 23: | ||
==Результати дослідження== | ==Результати дослідження== | ||
− | [[Файл:vss1.jpg | + | [[Файл:vss1.jpg |1000x300px]] |
+ | |||
У математиці часто доводиться додавати чи віднімати од¬ночлени. Наприклад, 7х + 2а — сума, а 7х - 2а — різниця одночленів 7х і 2а. Вираз 7х - 2а можна вважати також сумою одночленів 7х і -2а, бо 7х + (-2а) = 7х - 2а. Вираз 2х4 - Зх3 +х2-9х- 2 — сума одночленів 2х4, -Зх3, х2, -9х і-2. | У математиці часто доводиться додавати чи віднімати од¬ночлени. Наприклад, 7х + 2а — сума, а 7х - 2а — різниця одночленів 7х і 2а. Вираз 7х - 2а можна вважати також сумою одночленів 7х і -2а, бо 7х + (-2а) = 7х - 2а. Вираз 2х4 - Зх3 +х2-9х- 2 — сума одночленів 2х4, -Зх3, х2, -9х і-2. | ||
Версія за 12:35, 29 вересня 2012
Зміст
Назва проекту
Ода цілим виразам
Автори проекту
Сімейко Алла Іванівна
Тема дослідження
Многочлени, їх запис, дії над многочленами
Проблема дослідження
Які математичні записи можна вважати многочленами?
Гіпотеза дослідження
Ми вважаємо, що записи (а+b)c та abc можна вважати многочленами?
Мета дослідження
Дослідити, чи можна вважати записи (а+в)с та (авс) ̅ многочленами, адже вони перетворюються у суми одночленів.
Результати дослідження
У математиці часто доводиться додавати чи віднімати од¬ночлени. Наприклад, 7х + 2а — сума, а 7х - 2а — різниця одночленів 7х і 2а. Вираз 7х - 2а можна вважати також сумою одночленів 7х і -2а, бо 7х + (-2а) = 7х - 2а. Вираз 2х4 - Зх3 +х2-9х- 2 — сума одночленів 2х4, -Зх3, х2, -9х і-2.
Суму кількох одночленів називають многочленом. Кожний доданок многочлена називається його членом. На¬приклад, многочлен 2ху - 5х + 6 містить три члени: 2ху, -5х і 6.
Якщо многочлен містить два доданки, він називається двочленом, три — тричленом. Одночлен також вважається окремим видом многочлена.
Існують ділі вирази, які не є многочленами. Наприклад, вирази (а - b)2, 2а - (b + х)3 цілі, але не є многочленами. Зв’язки між згадуваними виразами ілюст¬рує малюнок