Відмінності між версіями «Проект на тему»

Матеріал з Iteach WIKI
Перейти до: Навігація, пошук
(Результати дослідження)
(Результати дослідження)
Рядок 25: Рядок 25:
 
==Результати дослідження==
 
==Результати дослідження==
 
'''Піраміда'''
 
'''Піраміда'''
 +
Пірамі́да — багатогранник, який складається з плоского багатокутника і точки (яка не лежить у площині основи) та всіх відрізків, що сполучають вершину піраміди з точками основи. Відрізки, що сполучають вершину піраміди з вершинами основи, називаються бічними ребрами.
 +
Поверхня піраміди складається з основи і бічних граней. Кожна бічна грань — трикутник. Однією з його вершин є вершина піраміди, а протилежною стороною — сторона основи піраміди.
 +
 +
Висотою піраміди є перпендикуляр, опущений з вершини піраміди на площину основи.
 +
 +
Піраміда називається n-кутною, якщо її основою є n-кутник. Для трикутної піраміди існує власна назва — чотиригранник.
 +
Правильна піраміда (довершена) — якщо її основою є правильний багатокутник, центр якого збігається з основою висоти піраміди. Бічна поверхня правильної піраміди дорівнює добутку півпериметра основи на апофему.
 +
 +
Вісь правильної піраміди — пряма, яка містить її висоту. У правильній піраміді бічні ребра рівні між собою, а бічні грані — рівні рівнобедрені трикутники.
 +
 +
Висота бічної грані правильної піраміди, проведена з її вершини, називається апофемою. Бічною поверхнею піраміди називається сума площ її бічних граней.
 +
Площа бічної поверхні правильної піраміди дорівнює добутку половини периметра (півпериметру) основи на апофему:
 +
S_b = \frac{1}{2} P l = \frac{n}{2} b^2 \sin \alpha,
 +
де P — периметр, l — апофема, n — число сторін основи, b — бічне ребро,  \alpha — кут при вершині піраміди
 +
Об'єм піраміди дорівнює одній третій добутку площі її основи S на висоту h:
 +
V = \frac{1}{3} S h
 +
Бокові ребра піраміди рівні;
 +
Бокові ребра піраміди нахилені до площини її основи під рівними кутами;
 +
Проекція вершини піраміди на площину її основи співпадає із центром кола, описаного навколо основи.
 +
Такі три твердження також є еквівалентними:
 +
 +
Вершина піраміди рівновіддалена від усіх сторін її основи;
 +
Двогранні кути при основі піраміди рівні;
 +
Вершина піраміди проектується до центру кола, вписаного в її основу.
 +
 +
* Площа бічної поверхні правильної піраміди дорівнює добутку половини периметра (півпериметру) основи на апофему:<br/> <math>S_b = \frac{1}{2} P l = \frac{n}{2} b^2 \sin \alpha</math>,<br/>де '''''P'''''&nbsp;— периметр, '''''l'''''&nbsp;— [[апофема]], '''''n'''''&nbsp;— число сторін основи, '''''b'''''&nbsp;— бічне ребро, <math> \alpha</math>&nbsp;— кут при вершині піраміди
 +
* Об'єм піраміди дорівнює одній третій добутку площі її основи '''''S''''' на висоту '''''h''''':<br/> <math>V = \frac{1}{3} S h</math>
  
 
== Піраміда ==
 
== Піраміда ==

Версія за 21:30, 1 травня 2014




Назва проекту

Хто захопив наш світ?

Автори проекту

Учні 11 класу. Група "Дослідники"

Тема дослідження

Які знання про многогранники допоможуть жити в сучасному суспільстві?

Проблема дослідження

Що ми знаємо про многогранники?

Гіпотеза дослідження

Мета дослідження

Результати дослідження

Піраміда Пірамі́да — багатогранник, який складається з плоского багатокутника і точки (яка не лежить у площині основи) та всіх відрізків, що сполучають вершину піраміди з точками основи. Відрізки, що сполучають вершину піраміди з вершинами основи, називаються бічними ребрами. Поверхня піраміди складається з основи і бічних граней. Кожна бічна грань — трикутник. Однією з його вершин є вершина піраміди, а протилежною стороною — сторона основи піраміди.

Висотою піраміди є перпендикуляр, опущений з вершини піраміди на площину основи.

Піраміда називається n-кутною, якщо її основою є n-кутник. Для трикутної піраміди існує власна назва — чотиригранник. Правильна піраміда (довершена) — якщо її основою є правильний багатокутник, центр якого збігається з основою висоти піраміди. Бічна поверхня правильної піраміди дорівнює добутку півпериметра основи на апофему.

Вісь правильної піраміди — пряма, яка містить її висоту. У правильній піраміді бічні ребра рівні між собою, а бічні грані — рівні рівнобедрені трикутники.

Висота бічної грані правильної піраміди, проведена з її вершини, називається апофемою. Бічною поверхнею піраміди називається сума площ її бічних граней. Площа бічної поверхні правильної піраміди дорівнює добутку половини периметра (півпериметру) основи на апофему: S_b = \frac{1}{2} P l = \frac{n}{2} b^2 \sin \alpha, де P — периметр, l — апофема, n — число сторін основи, b — бічне ребро, \alpha — кут при вершині піраміди Об'єм піраміди дорівнює одній третій добутку площі її основи S на висоту h: V = \frac{1}{3} S h Бокові ребра піраміди рівні; Бокові ребра піраміди нахилені до площини її основи під рівними кутами; Проекція вершини піраміди на площину її основи співпадає із центром кола, описаного навколо основи. Такі три твердження також є еквівалентними:

Вершина піраміди рівновіддалена від усіх сторін її основи; Двогранні кути при основі піраміди рівні; Вершина піраміди проектується до центру кола, вписаного в її основу.

  • Площа бічної поверхні правильної піраміди дорівнює добутку половини периметра (півпериметру) основи на апофему:
    <math>S_b = \frac{1}{2} P l = \frac{n}{2} b^2 \sin \alpha</math>,
    де P — периметр, l — апофема, n — число сторін основи, b — бічне ребро, <math> \alpha</math> — кут при вершині піраміди
  • Об'єм піраміди дорівнює одній третій добутку площі її основи S на висоту h:
    <math>V = \frac{1}{3} S h</math>

Піраміда

Піраміда

Висновки

Корисні ресурси